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Natural convection in a cube of fluid-saturated porous medium having a constant 
temperature top and bottom is studied numerically. In the first of two special cases 
considered, the vertical sides are insulated. In this case, the numerical simulations 
indicate permanently unsteady regularly and irregularly fluctuating convective 
states at Rayleigh numbers (R*) above 550. The regularly fluctuating convective 
state defined by simply periodic oscillations in the Nusselt number begins at  R* 
between 550 and 560. The frequency of the oscillations appears to depend on R* 
approximately as f K (R*)3.6. The irregularly fluctuating convective state defined by 
random variations in the Nusselt number begins at  R* between 625 and 640. In the 
second case, heat is transferred through the vertical sides of the cube. Three distinct 
flow patterns are identified depending on the rate of heat transfer and the Rayleigh 
number. For all runs in the range of Rayleigh numbers studied, the transition from 
the first to the second flow pattern occurs abruptly. 

1. Introduction 
According to linear theory, Beck (1972) shows that convection begins in a cube of 

porous medium with isothermal top and bottom and insulated vertical sides when 
the Rayleigh number, R*, equals 4n2. A two-dimensional roll cell is the only stable 
pattern immediately above the critical R* value. At R* = 4.51c2, a three-dimensional 
convective mode begins with an ascending flow at diagonally opposed edges of the 
cube and a descending flow at the other diagonally opposed edges. Using an analytic 
eigenfunction-expansion technique, Steen (1983) shows the stabilization of this 
three-dimensional convective mode for R* > 4 . 8 7 1 ~ ~  = 48.06. Above this value of R*, 
both two- and three-dimensional flows may exist. 

It was proposed by Malkus (1954) and Platzman (1965) that the type of flow 
(either two- or three-dimensional) that evolves to a steady configuration will 
maximize the heat transport. However, Straus & Schubert (1979) find numerically 
that both types of flow exist in a cube even though two-dimensional flows transport 
more heat than three-dimensional ones do for R* < 97, while the opposite is true for 
R* 3 97. This is verified by Holst & Aziz (1972) who calculate both two- and three- 
dimensional flows in cubes at  R* = 60 and 120. Although two-dimensional or three- 
dimensional convection cannot be predicted based on the flow that maximizes the 
heat transport, Schubert & Straus (1979) find it is possible to force a specific type of 
flow by emphasizing a particular mode in the initial conditions. On the other hand, 
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different sets of random initial conditions give either two- or three-dimensional 
convection for the same R* value. Steen (1983) obtains the regions within the space 
of initial conditions that lead to one or the other of these competing flows. Once the 
type of flow is established based on initial conditions, both two- and three- 
dimensional flows are steady for R* above the critical. The flow remains steady until 
a second critical R* is attained. The flow changes from steady convection to regularly 
fluctuating convection above the second critical R*. 

Using a Galerkin method, Schubert & Straus (1979) find the onset of the three- 
dimensional regularly fluctuating convective state in a cube of porous medium to 
occur a t  R* between approximately 300 and 320. At larger R*,the flow changes from 
regularly fluctuating to irregularly fluctuating convection. The three-dimensional 
irregularly fluctuating convective state begins a t  R* between 350 and 400 and exists 
to the largest value computed a t  R* = 500. Horne (1979) is the only other 
investigator to observe time-dependent three-dimensional convection in a cube of 
porous medium. The flow is largely a two-dimensional roll with ‘waves’ moving in 
the third dimension. Using finite-differencing schemes, he observes irregular 
fluctuations a t  R* = 300 and 400. The values obtained numerically for the onset of 
three-dimensional fluctuating convection have not been verified experimentally. To 
the authors’ knowledge, no experimental data have been reported for fluctuating 
convection in a cube of porous medium. 

The only experimental verification of fluctuating convection in a three-dimensional 
geometry is in two concentric horizontal cylinders. I n  this experiment, Caltigirone 
(1976) uses a visual technique to observe a three-dimensional thermal field for 
R* > 70 in the upper part of the annular layer. Since the cell for visualization did not 
yield precise information on the heat transfer between the cylinders, Caltigirone 
constructed another experimental cell with thermocouples placed in the fluid 
saturating the porous material. For R* > 65, the flow changes from steady two- 
dimensional convection to fluctuating three-dimensional convection in the upper 
part of the annular layer as  evidenced by fluctuations in the fluid temperature. 

Other experimental studies verify the existence of the fluctuating convective state 
in fluid-saturated porous media having different geometries. These geometries are 
categorized into two groups. The first includes geometries that  have a vertical length 
much smaller than either horizontal length and are referred to as horizontal layers. 
The second group includes geometries that have one horizontal length much smaller 
than the other horizontal and vertical lengths. The essentially two-dimensional flows 
that exist in these geometries approximate the motion in the cross-section of an 
infinite horizontal rectangular channel that  contains a strictly two-dimensional roll. 
These geometries are referred to as rectangular cross-sections. 

The fluctuating convective state is observed experimentally to exist in both 
horizontal layers and rectangular cross-sections. Combarnous & LeFur (1969) 
observe the fluctuating convective state in a horizontal layer and a more detailed 
description is given later by Combarnous (1970). The fluctuating convection begins 
in the range 240 < R* < 390 and the onset depends on the characteristics of the 
porous medium. An abrupt change in the slope of the Nusselt-Rayleigh number 
(Nu-R*) curve occurs a t  the onset of the fluctuating convection. Gupta & Joseph 
(1973) compute the theoretical bounding heat-transport (Nu-R*) curve for natural 
convection in an infinite horizontal layer of porous medium using a variational 
method. Their results indicate that the slope of the Nu-R* curve changes a t  R* = 
221.5. Their value compares well with the experimental value R* = 245 that Buretta 
& Berman (1976) obtain for the change in slope of their Nu-R* curve. Using a 
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Critical Period 
Rayleigh Nusselt of 

Investigator number number oscillation 

Horne & O’Sullivan (1974) 280 NA 0.029 
Caltagirone (1975) 384 5 NA NA 

Schubert & Straus (1979, 1982) 38MOO 5.09-5.45 0.012 
Gary & Kassoy (1981) 350400 4.99-5.07 0.01 175 

TABLE 1. Comparison of the critical Rayleigh number at the onset of fluctuating convection for 
two-dimensional flow in a square cross-section. The comparisons between the minimum and 
maximum Nusselt numbers and the non-dimensional time period between succeeding Nusselt 
maxima are for the case R* = 400. 

horizontal layer, Seki, Fukusako & Ariake (1980) find that the fluctuating convection 
begins in the range 260 < R* < 320 and is dependent on the characteristics of the 
porous medium. They observe both regular and irregular fluctuations in the fluid 
temperature although the value of R* a t  which the irregular fluctuations begin is not 
reported. They also observe that the frequency of the oscillations in the fluid 
temperature for the regularly fluctuating convection increases with increasing R* 
values. Caltagirone, Clopeau & Combarnous (1971) observe experimentally that 
fluctuating convection begins in the range 190 < R* < 390 for a rectangular cross- 
section. 

In  addition to Caltagirone’s experimental work using a rectangular cross-section, 
there are several numerical investigations on two-dimensional fluctuating convection 
in a square cross-section of porous medium with the top and bottom at a constant 
temperature and insulated sides. A comparison of the value of R* at the onset of 
regularly fluctuating single-cell convection is summarized in table 1. Also the range 
from the minimum to the maximum Nusselt number and the period between 
succeeding Nusselt maxima are listed for the case R* = 400. The value of R* for the 
onset of regularly fluctuating convection is generally higher in rectangular cross- 
sections than horizontal layers. This is due possibly to the stabilizing effect of the 
lateral walls. Schubert & Straus (1982) suggest possible forms for a functional 
relationship between the frequency f of the oscillations in the Nusselt number and 
R*. They observe three regimes in regularly fluctuating two-dimensional con- 
vection: in the first regime, f K (R*)i, the second regime is characterized by two 
frequencies, and in the third regime, f a (R*)’. In  the range of two-dimensional flows 
computed, Horne & O’Sullivan (1978) also observe that f K (R*)’. 

Although none of the works mentioned earlier include heat transfer through the 
vertical sides, variations in the boundary conditions can have large effects on the 
natural convective motion in porous media. The mathematical convenience of 
perfectly insulated sides may not be realistic in many practical applications. Stamps 
& Clark (1986) find it necessary to include finite heat transfer at  the boundaries of 
a rectangular volume of porous medium to predict numerically the unsteady 
thermocline degradation in a solar thermal storage device. Recognition of finite heat 
transfer rates at the boundaries is shown to be a significant factor in improving the 
predictive capability of the numerical model. Further, different flow patterns exist 
for boundaries with finite heat transfer and insulated boundaries. The phenomenon 
of boundary-affected flows has also been observed by Kassoy & Cotte (1985) for the 
onset of convection in a thin, vertically oriented, finite slab of porous medium with 
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sidewall heat transfer. Lowell & Hernandez (1982) include the effect of boundary 
conditions on finite-amplitude convection in a similar geometry. 

Although these studies demonstrate the importance of boundary-affected flows, 
none address the question of how much heat transfer is necessary to produce the 
different flows that may exist. Additionally, the question of whether the transition 
among the different flows is continuous or abrupt has not been addressed. Riahi 
(1983) considers the first question for a horizontal layer with finite conducting 
boundaries. He finds that three-dimensional square-flow-pattern convection and 
two-dimensional rolls may exist at the onset of convection, depending on a fixed set 
of values of the thermal conductivity of the fluid and the upper and lower 
boundaries. Weidman & Kassoy (1986) find that two- and three-dimensional flows 
may exist at the onset of convection in a thin, vertically oriented, finite slab of 
porous medium depending on the rate of heat transfer from the vertical sides. The 
problem of boundary-affected flows and the nature of the transition among these 
flows has not been considered for boxes. 

In summary, additional work at high Rayleigh numbers is necessary to describe 
the permanently unsteady fluctuating convective state in a cube of porous medium 
with constant temperature top and bottom and insulated vertical sides. Schubert & 
Straus (1979) consider this problem and perform calculations up to R* = 500. The 
first of the two objectives in the present investigation is to extend the calculations 
to R* = 800. In a related problem, the effect of finite heat transfer at the boundaries 
of a porous medium is considered. No study has considered boundary-affected flows 
in rectangular boxes. The second objective in the present investigation is to describe 
the motion in a cubic box of porous medium resulting from variations in the 
boundary conditions. The results indicate that both two- and three-dimensional 
motion exist, depending on the rate of heat transfer through the vertical sides and 
the Rayleigh number. This objective includes identifying the types of flow pattern 
that exist and the nature of the transitions among flow patterns. 

2. Formulation and solution 
Consider a rectangular volume of a fluid-saturated homogeneous and isotropic 

porous medium with impermeable sides and finite heat transfer on all sides. The 
bottom of the volume is z = 0 and the top is z = L,. The sides of the volume are 
x = 0, x = L,, y = 0, and y = L,. Although the equations are developed for a volume 
with arbitrary dimensions and arbitrary thermal boundary conditions, the present 
numerical results are restricted to a cube with constant tempdrature top and bottom. 

The following assumptions are inherent in the derivation of equations (1)-(3) 
below: (i) all properties are constant except for variations in the density with 
temperature in the body force term, (ii) the fluid density is a linear function of the 
temperature, (iii) inertial effects are negligible, (iv) thermal dispersion is negligible, 
and (v) the fluid and solid are in local thermal equilibrium. The non-dimensional 
volume-averaged equations governing convection in a volume of porous medium are 
the conservation of mass, momentum (Darcy’s law), and energy: 

w- v =  0, 
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where R* E p(T,- T,) gKLz/v, a, is the modified Rayleigh number for porous media. 
In this dimensionless number, p is the thermal coefficient of volume expansion, 
and T, are respectively the initial lower and upper surface temperatures along a 
vertical line a t  the centre of the volume, g is the acceleration due to gravity, K is the 
permeability of the medium, v, is the kinematic viscosity of the fluid, and a, is the 
thermal diffusivity of the saturated porous medium. The thermal diffusivity is 
defined as a, = k$/( pep)*, where k z  is the effective thermal conductivity of the fluid 
and solid matrix. In the governing equations, V is the Darcy velocity, p T  is the 
dynamic pressure, T is the temperature, and k is a unit vector in the positive z- 
direction. Equations (1)-(3) are non-dimensionalized by letting (x’, y’, z’) = L,(x, y, z) ,  

where the primes denote dimensional quantities. Unless otherwise specified, the 
subscripts f and m denote fluid and porous medium respectively. 

Horne (1979) shows that by introducing a vector potential of the form 

v = v x Q ,  (4) 

into the formulation, the resulting equations may be solved numerically faster and 
more accurately than with the formulation using the primary variables in (1) and (2). 
This vector potential satisfies identically the continuity equation. Hirasaki & 
Hellums (1968) show that the potential is also solenoidal since the velocity is 
solenoidal : 

v . i  = 0. ( 5 )  

Introducing (4) and (5 )  into the curl of (2) yields the following set of equations 

aT V2@, = R*- 
i 3 X ’  

(7) 

For rigid boundaries, the boundary conditions in terms of the vector potential are 
derived by Hirasaki & Hellums (1968) : 

at x = 0 , l .  

The solution to (8) using the boundary conditions for aZ is QZ = 0 everywhere. 
13-2 
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The non-dimensional thermal boundary conditions are 

3T L 
-+B*(T-T,) = 0 a t  z = O , > ;  
az - L X  

3T L 
-+B*(T-T,) = 0 a t  y = 0 , d ;  
aY - L X  

3T 
-+B*(T-T,) = 0 at x = 0 , l .  
ax - 

The minus sign corresponds to the boundary a t  the origin and the plus sign 
corresponds to the other boundary. The dimensionless ratio B* is a modified Biot 
number for porous media and is defined as B* = hL,/k$, h being the heat transfer 
coefficient on the outside of the volume and T, the ambient temperature. For the 
numerical results presented in this study, the top and bottom are a t  T = 0 and 1 
respectively and B* + a. For insulated vertical sides, B* = 0. 

The parabolic part of the formulation (3) is solved using the alternating directions 
implicit (ADI) method and the elliptic part corresponding to (6) and (7) is solved 
using the successive line over-relaxation method. These methods are described in 
Roache (1972). Both methods are fully implicit and are second-order accurate in 
space even a t  the boundaries. The AD1 method is also second-order accurate in time. 
The full second-order accuracy of the AD1 method can be deteriorated by the 
nonlinear terms in the energy equation unless the values of the velocity terms are at 
the current intermediate time step. This requires an iterative process, and a 
minimum of three iterations within each time step is performed in this study. A 
detailed derivation of the governing equations and description of the solution 
method is given by Stamps (1985). 

3. Results 
3.1. Natural convection in a cube with insulated vertical sides 

All results are obtained for a cube with constant temperature top and bottom and 
insulated vertical sides. In this problem, as the Rayleigh number increases, at  least 
four distinct regimes are identified for three-dimensional natural convection 
including a conduction, a steady convection, a permanently unsteady regularly 
fluctuating convection, and a permanently unsteady irregularly fluctuating con- 
vection regime. These results agree with the four regimes observed by Schubert & 
Straus (1979) for the same geometry and boundary conditions. The same four 
regimes have also been observed experimentally in a horizontal layer by Seki et al. 
(1980) and numerically in a square cross-section by Schubert & Straus (1979). 

Table 2 summarizes the results for the steady convection regime. Nu is the 
instantaneous Nusselt number spatially averaged over the bottom plane and N ,  M ,  
and P are the number of grid points in the x-, y-, and z-directions respectively. The 
Nusselt number is constant to a t  least five significant figures in the steady convection 
regime. Odd grid sizes are used because the Rayleigh number is calculated initially 
along the vertical centreline of the cube. The results of the present investigation 
indicate that convection begins at R* = 4n2 which verifies Beck’s (1972) results for 
the onset of convection in a cube. For 4n2 < R* < 300, the Nusselt numbers obtained 
in the present investigation agree to within less than 1% with those obtained by 
Schubert & Straus (1979). For 320 < R* < 500, Schubert & Straus obtain fluctuating 
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Rayleigh number Nusselt number Grid size 
(R*) (Nu) ( N x M x P )  

39.48 (4n2) 
50 

100 
150 
200 
250 
300 
400 
550 

1.00 
1.16 
2.66 
3.69 
4.48 
5.11 
5.66 
6.41 
7.25 

9X9X33 
9X9X33 
9X9X33 
9X9X33 
9X9X33 
9X9X33 

11 x 11 x41 
29 x 29 x 29 
29 x 29 x 29 

TABLE 2. Nusselt numbers for steady natural convection in a cube of porous medium. N ,  M, 
and P are the number of grid points in the x-, y-, and z-directions, respectively. 

560 
580 
600 
625 
640 
650 
700 
800 

7.30 
7.43 
7.71 
8.02 
8.44 
8.58 
9.80 

10.84 

7.303-7.296 
7.46-7.39 
7.78-7.64 
8.06-7.98 
8.64-8.22 
8.95-8.31 

10.44-9.20 
11.5%10.11 

0.0055 
0.0053 
0.0046 
0.0038 

0.0027-0.0066 
0.0024-0.0072 
0.0016-0.0084 
0.0012-0.0072 

TABLE 3. Nusselt numbers for unsteady natural convection in a cube of porous medium. is the 
time-averaged value, Nu,, and Nu,,, are the largest and smallest values in the run respectively, 
and T~ is the time period between successive maxima. All values are calculated using a grid size of 
NxM x P = 29 x 29 x 29. 

convection, and since they do not report time-averaged Nusselt numbers no direct 
comparison can be made. 

The results of the fluctuating convection regimes are summarized in table 3. The 
time-averaged Nusselt number, Nu, is defined as 

1 tmux 

Nu = - 11 Nu(t)At,  
ttotal 1-1 

where Nu(t) is the instantaneous spatially averaged Nusselt number, At is the time 
step, t,,, is the maximum number of time steps considered, and ttotal is the total time 
period. The range of Nusselt number, Nu,,,-Numin, is the difference between the 
largest and smallest values in the run and 7,, is the time period between successive 
Nusselt maxima. 

Regularly fluctuating convection begins in a cube at  R* between 550 and 560. This 
differs from the only other value for the onset of fluctuating convection in a cube 
which Schubert & Straus (1979) determine using a Galerkin method to be between 
300 < R* < 320. Their final steady Nusselt value Nu = 5.642 at R* = 300 calculated 
with a truncation level N = 14 compares quite well with the value Nu = 5.658 a t  
R* = 300 in the present study using 4961 grid points (11 x 11 x 41). They use a less 
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accurate truncation level, N = 12, to determine the onset of fluctuating convection 
at R* = 320. In contrast, the present study determines the onset of fluctuating 
convection using 24389 grid points (29 x 29 x 29). Additionally Schubert & Straus 
use a first-order-accurate explicit time-stepping procedure compared with the 
second-order-accurate implicit temporal method used in the present study. 

The transition Rayleigh number asymptotically approaches a limiting value as the 
spatial resolution increases. The transition number for an 11 x 11 x 11 grid (1331 grid 
points) is 380 < R* < 400. As the grid size is increased to 17 x 17 x 17 (4913 grid 
points), the transition Rayleigh number increases to 470 < R* < 485. Using a 
23 x 23 x 23 grid (12 167 grid points), the transition number is 530 < R* < 540. By 
approximately doubling the number of grid points relative to the 17 x 17 x 17 grid, 
the transition number increases by about 60. If the number of grid points is doubled 
again with a 29 x 29 x 29 grid (24389 grid points), the transition number increases 
asymptotically to 550 < R* ~ 5 6 0 .  The slight increase of 20 in the transition 
Rayleigh number as the grid is increased from 23 x 23 x 23 to 29 x 29 x 29 is within 
the level of accuracy of the transition number generally reported for a given grid size. 
For example, Schubert & Straus (1979) determine their transition number to be 
300 < R* < 320. 

It is not unreasonable to expect a larger Rayleigh number than Schubert & Straus 
obtained for the onset of fluctuating convection for two reasons. First, in a two- 
dimensional problem similar to the current one, Schubert & Straus (1979, 1982) 
determine that the value of the transition Rayleigh number between steady and 
fluctuating convection increases with increasing accuracy of the solution. They find 
that by increasing the level of truncation from N = 10 to N = 18, the transition 
Rayleigh number increases from 300 < R* < 320 to 380 < R* < 400. For the second 
reason, higher transition Rayleigh numbers are expected for cubic boxes than less 
confined geometries. Seki et al. (1980) report a transition Rayleigh number in the 
range 260 < R* < 320 for a horizontal layer while Schubert & Straus (1982) report 
a larger value 380 < R* < 400 in a square cross-section. It is reasonable to expect 
that an even larger transition Rayleigh number, such as the 550 < R* < 560 
obtained in the present study, should occur in a cubic box than in either a square 
cross-section or a horizontal layer because of the stabilizing effect of the lateral walls. 

Horne (1979) is the only other investigator to obtain time-dependent convection 
in a cube; however, his results cannot be compared with the present results since his 
flows are essentially two-dimensional. Home’s initial (1 ,1 ,0 .1)  modal disturbance for 
his R* = 300 and 400 runs evolves largely into an overall two-dimensional flow with 
‘waves’ moving in the third dimension. This flow is unlike the three-dimensional 
flows that evolve from the initial ( 1 , 1 , 1 )  modal disturbances used in the present 
investigation and that of Schubert & Straus (1979). Horne solves the energy equation 
using a first-order-accurate explicit forward time-stepping procedure, a fourth-order 
Arakawa template for the advection terms, and a 17 x 17 x 17 grid for his two time- 
dependent runs a t  R* = 300 and 400. This compares to the second-order-accurate 
implicit temporal and spatial methods and a 29 x 29 x 29 grid used for the time- 
dependent runs in the present investigation. 

From table 3 it is seen that in the regularly fluctuating convection, 560 < R* < 
625, the period rP decreases, or frequency f increases, with increasing Rayleigh 
number. This relationship between f and R* has not been observed previously in 
natural convective flows in rectangular boxes. However, Seki et al. (1980) and 
Schubert & Straus (1982) observe this numerically in a square cross-section. 
Irregularly fluctuating convection begins in a cube at R* between 625 and 640. The 
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FIQURE 1. The Nusselt number aa a function of the Rayleigh number for three-dimensional 
convection in a cube having insulated vertical sides and constant temperature top and bottom. The 
solid line represents the Nusselt numbers in the steady convection regime. The solid and dashed 
crossbars represent the range between the minimum and maximum Nusselt numbers in the 
unsteady convection regime for the present investigation and Schubert & Straus (19?9), 
respectively. 

nature of this flow is characterized by a Nusselt number that is composed of either 
two basic frequencies or random variations that are not composed of any distinct 
frequencies. This compares to the range 350 < R* < 400 that Schubert & Straus 
(1979) obtain for the same geometry and boundary conditions. When a range is given 
for the period rather than a single value for 640 < R* < 800, it indicates that the 
period is observed to vary over that range. It can be seen from table 3 that the range 
of rp increases with increasing Rayleigh number. These results agree with those 
Schubert & Straus (1979) obtain. The time step used for all runs is always an order 
of magnitude less than the average time period. 

The Nusselt numbers reported for the current grid sizes vary by less than 1 % from 
the Nusselt numbers at the next smaller grid size. The accuracy in the Nusselt 
number applies to the steady-state results listed in table 2 m well as the time- 
dependent results listed in table 3. In the time-dependent cases, the time-averaged 
Nusselt number is used. As an example, for the largest Rayleigh number run at 
R* = 800 the time-averaged Nusselt number % = 10.84 for the grid size of N x M  x 
Y = 29 x 29 x 29 varies by less than 1 % from the value % = 10.75 at the next smaller 
grid size of N x M x P = 27 x 27 x 27. Additionally, the range of time period values 
remains the same for R* = 800 for these two different grid sizes. As an example of a 
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FIQURE 2. Velocity and temperature distributions at the boundaries of a cube with insulated 
vertical sides for R* = 600 at the time t = 0.3471 corresponding to a local Nusselt minimum. The 
grid size is 29 x 29 x 29. Arrows represent velocity vectors and solid lines represent vertical 
temperature distributions at the centre and corners of the vertical sides. 

steady-state case, at R* = 300 the Nusselt number Nu = 5.66 for the grid size of 
N x M  x P = 11 x 11 x 41 varies by less than 1 % from the value Nu = 5.62 at the next 
smaller grid size of N x M x  P = 9 x 9 x 33. 

The four regimes may be summarized in the Nusselt-Rayleigh (Nu-R*) curve 
shown in figure 1. The abrupt change in the slope of the curve at approximately 
R* = 40 marks the transition between the conduction regime and the steady 
convection regime. Steady convection is represented by a solid line that is obtained 
by a cubic-spline fit of the data in table 2. Unsteady convection is represented by the 
values of the time-averaged Nusselt number in table 3 with the solid cross bars 
marking the range between the minimum and maximum Nusselt numbers. The 
values of the Nusselt number in the unsteady convection regime do not lie on a 
smooth extension of the steady convection curve. The change in the slope of the 
curve between R* = 550 and 560 marks the transition between steady and unsteady 
convection. Combarnous (1970) and Buretta & Berman (1976) observe experi- 
mentally an abrupt change in the slope of their Nu-R* curve between steady and 
unsteady convection in a horizontal layer. The results Schubert & Straus (1979) 
obtain for a cube are included in figure 1. Since their values for 4n2 < R* < 300 are 
nearly identical to the values of the present study, the points coincide on the same 
curve. They obtain fluctuating convection for 320 < R* < 500 and the dashed cross 
bars represent the range between the minimum and maximum Nusselt numbers. 

The case R* = 600 is used to demonstrate typical flow patterns and temperature 
distributions for the regularly fluctuating convection regime as shown in figure 2. The 
arrows represent the velocity vectors on the cube faces. Note that the volume- 
averaged governing equations for porous media allow for slip on rigid walls. The 
length of the arrow corresponds to the magnitude of the velocity. The three solid 



Nuturul convection in a jtuid-saturated porous medium. 

1 
1.10 1.15 1.20 1.25 1.30 1.35 

Time (dimensionless) 

7.60 4 

387 

4 

100 200 300 400 500 600 700 800 
10-7 

Frequency 

FIGURE 3. (a) Temporal variations in the Nusselt number and ( b )  the corresponding discrete 
Fourier transform for R* = 600. 

lines qn the front face represent the temperature along vertical lines at the left edge, 
centre, and right edge of the cube face. The three sets of rectangular dashed lines 
enclosing the solid temperature lines mark the temperature range of zero to one from 
left to right. The solid line touches the left dashed line at the top and the right dashed 
line at  the bottom, indicating that the non-dimensional temperature is zero and one 
at these surfaces respectively. The diagonally dashed line represents the linear 
conduction temperature profile that would exist if there were no convection present. 
The deviation of the solid line from the diagonally dashed line shows the effect of the 
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FIQURE 4. Typical velocity and temperature distributions at the boundaries of a cube with 
insulated vertical sides for R* = 800 at the time t = 0.152. The grid size is 29 x 29 x 29. Arrows 
represent velocity vectors and solid lines represent vertical temperature distributions at the centre 
and corners of the vertical sides. 

convection. The clockwise flow on the front face of the cube produces temperatures 
larger than the conduction profile on the left edge since hot fluid from the bottom is 
convected upwards. Likewise temperatures smaller than the conduction profile are 
produced by cold fluid from the top convected downward. The solid and dashed lines 
on the other vertical side have the same meanings as on the front face. Note that the 
two solid lines at  the front right edge are the same temperature with different 
perspective. The unsteady behaviour is characterized by locally hot or cold regions 
of fluid being carried by the main flow. This can be observed in figure 2 by the local 
variations in the vertical temperature distribution at the corners that is not 
characteristic of steady flows. A pictoral sequence showing nine time steps between 
successive Nusselt maxima indicates that there are a t  lea@, four pairs of hot and cold 
regions being carried by the main stream for R* = 600. This result has not been 
reported previously for rectangular boxes. However, Caltagirone (1975) observes 
four counter-rotating vortices varying around a mean position to coexist at  high 
Rayleigh numbers in a rectangular cross-section of small aspect ratio. For slightly 
larger aspect ratios, four or eight additional rolls may appear. Caltagirone interprets 
these rolls as microvortices resulting from thermal instabilities near the sides. 

The case R* = 600 is used to demonstrate typical variations in the Nusselt number 
for the regularly fluctuating convection regime. Figure 3 shows the temporal 
variations in the Nusselt number and the corresponding discrete Fourier transform 
of this curve. The long-time solution is periodic with constant amplitude centred 
about a steady time-averaged Nusselt number. The discrete Fourier transform is 
shown as the magnitude of the Fourier coefficient plotted for each frequency. The 
three peaks correspond to the fundamental frequency of the periodic variation in the 
Nusselt number and its harmonics. 
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The fundamental frequency of the regularly fluctuating convection increases as the 
Rayleigh number increases. For R* = 560,580,600, and 625, the frequency increases 
according to f = 181, 188,216, and 260 (non-dimensional time)-', respectively. With 
these values, f is approximately proportional to (R*)3.6. The proportionality was 
determined using standard linear regression techniques. 

The case of R* = 800 is used to demonstrate typical flow patterns and temperature 
distributions for the irregularly fluctuating convection regime as shown in figure 4. 
Similar to the regularly fluctuating convection, locally hot and cold regions of fluid 
carried by the main flow are observed as local variations in the vertical temperature 
distribution at the corners. These local regions of fluid also correspond to the velocity 
surges moving towards the centre on the top face of the cube. 

The nature of the fluctuations in the irregularly fluctuating convection regime is 
more complex than in the regularly fluctuating convection regime. For example, at 
R* = 650, the fluctuations in the Nusselt number are composed of two basic 
frequencies. At this Rayleigh number, the four frequencies with the largest Fourier 
coefficient that can be identified from the Fourier transform of the Nusselt versus 
time curve are 150, 333, 483, and 656 (non-dimensional time)-'. The third frequency 
is the sum of the first two and the fourth frequency is approximately the first 
harmonic of the second frequency. The transition from a periodic flow to a flow with 
two basic frequencies for fluctuating convection in a cube is similar to the transition 
Schubert & Straus (1982) observe in a square cross-section. The Fourier transforms 
for R* = 700 and 800 show that the fluctuations are not composed of any distinct 
frequencies for the set of data analysed. The transforms exhibit characteristics 
similar to those Kimura, Schubert & Straus (1986) obtain for their non-periodic 
solutions in a square cross-section. Kimura et al. observe three states as the flow 
changes from steady to non-periodic : periodic, quasi-periodic or a flow with two basic 
frequencies, and a second periodic state. In the present study the following states are 
observed: a regular or periodic state, a state with two basic frequencies, and an 
irregular or non-periodic state. 

3.2. Natural convection in a cube with jinite heat transfer on the vertical sides 
As an extension of the problem discussed in the previous section, the effect of finite 
heat transfer through the vertical sides instead of insulated sides is considered. 
Except for the change in boundary conditions on the vertical sides, all other 
conditions are the same. The heat transfer from the vertical sides is characterized by 
the Biot number, B*, in the thermal boundary conditions (12)-(14). In all runs the 
ambient temperature T, is set equal to the cold upper surface, the grid size is 
N x M x P = 9 x 9 x 33, and the initial conditions are values at the conduction state. 
Although a grid size of 11 x 11 x 41 is used for the insulated case at R* = 300, a grid 
size of 9 x 9 x 33 is used for the finite heat transfer case at R* = 300 to be consistent 
with the other R* values. This should introduce little error since the difference in Nu 
at R* = 300 is less than 0.3% between the two grid sizes. Distinct flow patterns are 
observed for increasing values of B*. 

The type of flow pattern observed depends on the Biot number as well as the 
Rayleigh number. In all cases three distinct patterns have been identified. As the 
Biot number increases for R* = 100, the flow pattern changes from a unicellular 
three-dimensional pattern to a unicellular two-dimensional pattern and then to a 
different unicellular three-dimensional pattern as shown in figure 5 (a-c). A11 figures 
illustrate typical flow patterns. As the Biot number increases for R* = 150,200, and 
300, the flow pattern changes from a unicellular three-dimensional pattern to a 
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FIGURE 5(a, 6 ) .  For caption see facing page. 

bicellular two-dimensional pattern and then to a different unicellular three- 
dimensional pattern as shown in figure 6 (a+). Flow patterns for R* = 300 in figure 6 
are representative of similar patterns for R* = 150 and 200. It is reasonable to 
assume that the bicellular roll will exist instead of the unicellular roll a t  larger 
Rayleigh numbers since both Schubert & Straus (1979) and Horne & O’Sullivan 
( 1974) show that multicellular flows are steady a t  larger Rayleigh numbers when 



Natural convection in a fluid-saturated porous medium 39 1 

1 
,' I 

FIQURE 5. Velocity and temperature distributions for R* = 100 and (a) B* = 0.160, (b) 0.161, 
and ( c )  2.00. 

unicellular rolls are not. In  all cases for 100 < R* < 300, the flow pattern shown in 
figures 5 (c )  and 6 ( c )  appears most stable for large B* since the fluid flows downward 
on all four vertical sides exposed to a cold ambient and up the centre. A similar 
phenomenon occurs for large B* values when the ambient temperature is set equal 
to the hot lower surface. For this case, fluid flows upward on all four vertical sides 
exposed to a hot ambient and down the centre. 

The Nu-B* curve shown in figure 7 summarizes the nature of the motion for 
B* < 0.5 in the range 150 < R* < 300. At small B*, the unicellular three-dimensional 
motion consists of an ascending flow a t  diagonally opposed edges of the cube and a 
descending flow at the other diagonally opposed edges. This motion also exists in a 
cube with insulated vertical sides and the Nusselt numbers for the insulated case a t  
B* = 0 shown in figure 7 are the same values listed in table 1. The Nusselt number 
increases as the Biot number increases. This occurs because the Nusselt number, 
averaged over the bottom surface, accounts not only for the heat transfer through 
the top but also the increasing amount of heat transfer through the sides. The 
unicellular three-dimensional motion exists until a critical value of the Biot number, 
B,*,. At this value there is an abrupt decrease in the Nusselt number and an 
accompanying change in motion to  the two-dimensional bicellular roll. Typical flow 
patterns for 150 < R* < 300 a t  B:r are shown in figures 6 (a, 6 )  for R* = 300. The flow 
also changes from three- to two-dimensional motion a t  B& for R* = 100. Instead of 
the bicellular roll that exists for 150 < R* < 300, however, the flow is a unicellular 
roll for R* = 100. The flow patterns a t  B:r are shown in figure 5 ( a ,  b) .  

The critical values of B* and the accompanying decrease in Nusselt number for 
100 < R* < 300 are summarized in table 4. 'Although the variation in B& is not 
monotonic, it is not unreasonable to expect that this will occur since the flows are 
different for R* = 100 and 150 < R* < 300. The transition to the two-dimensional 
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FIGURE 6(a, b ) .  For caption see facing page. 

bicellular roll for 150 < R* < 300 occurs at approximately the same critical value of 
B*. To be consistent, a 9 x 9 x 33 grid size was chosen to determine B& for all runs. 
It may be possible that the variation in will change with larger grid size. Results 
from preliminary work indicate that there is also an abrupt transition from the two- 
dimensional roll to the second three-dimensional motion. 
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RQURE 6. Velocity and temperature distributions for R* = 300 and (a) B* = 0.103, ( b )  0.104, 
and (c )  2.00. 

4. Summary and discussion 
Natural convection in a cube of fluid-saturated porous medium has been studied 

numerically. In the first of the two special cases considered, the vertical sides of the 
cube are insulated and the range of Rayleigh numbers has been extended to 800. 
Between 550 < R* < 560, a transition from steady three-dimensional flow to 
regularly fluctuating three-dimensional flow is observed with a corresponding change 
in the slope of the Nusselt-Rayleigh number curve. The change in slope is consistent 
with the experimental observations of Combarnous (1970) for a horizontal layer. The 
regularly fluctuating flow is characterized by periodic oscillations in the Nusselt 
number and the frequency of these oscillations is found to vary approximately as 
f cc (R*)3.6. This represents a relationship not determined previously for regularly 
fluctuating convection in a cube. However, Schubert & Straus (1982) determine for 
regularly fluctuating convection in a square cross-section that f cc (R*)n where n = $ 
or depending on the Rayleigh number. Horne & O’Sullivan (1978) attempt to 
explain the power n = t  using the mechanisms of instabilities in the thermal 
boundary layer and the circulation time. Preliminary attempts to explain the powers 
n = # and 3.6 were not successful although power relations for other geometries, 
such as horizontal layers, may eventually prove useful in the attempt. Between 
625 < R* < 640, a second transition from the regularly fluctuating flow to irregularly 
fluctuating flow is observed. At R* = 640 and 650, for example, the fluctuations in 
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Biot number 

FIQURE 7. Variations in the Nusselt number with the Biot number for R* = 150 (@), 200 (O), 
and 300 ( + ). 

Rayleigh number Br, A N U  

100 0.160 -0.064 
150 0.097 -0.447 
200 0.109 -0.317 
300 0.103 -0.245 

TABLE 4. Critical values of B* for various Rayleigh numbers. B:* and ANu are the critical value 
of B* and accompanying decrease in Nu number at the first transition respectively. 

the Nusselt number are composed of two basic frequencies. The transition from a 
periodic flow to a flow with two basic frequencies has not been reported for a cube ; 
however, this transition is similar to the one Schubert & Straus (1982) observe in a 
square cross-section. For R* = 700 and 800 the fluctuations in the Nusselt number 
are not composed of any distinct frequencies. Although the values of R* at which the 
transitions to regularly and irregularly fluctuating convection occur are larger than 
the values Schubert & Straus (1979) observe, the nature of the flow a t  each transition 
is quite similar. These transitions are also similar to the experimental observations 
of Seki et al. (1980) for a horizontal layer. 

In the second case, finite heat transfer through the vertical sides of the cube is 
considered. The numerical results indicate the existence of three distinct flow 
patterns depending on heat transfer characterized by a Rayleigh number and a Biot 
number appropriate for porous medium. At small Biot numbers, the motion is three- 
dimensional and consists of an ascending flow at diagonally opposed edges of the 
cube and a descending flow a t  the other diagonally opposed edges. As the Biot 
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number increases, the motion changes to a two-dimensional flow having either one 
or two cells depending on the Rayleigh number and then to a different three- 
dimensional motion involving a descending flow on all vertical sides and an ascending 
flow a t  the centre. The transition from the first to the second flow pattern occurs 
abruptly at a critical Biot number for all Rayleigh numbers. The value for the critical 
Biot number is approximately the same for two-dimensional flows with bicellular 
rolls. 

The authors gratefully acknowledge resources from the Nuclear Technology 
and Applications Development Department at Sandia National Laboratories, 
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